Working With Missing Values

نویسنده

  • ALAN C. ACOCK
چکیده

Less than optimum strategies for missing values can produce biased estimates, distorted statistical power, and invalid conclusions. After reviewing traditional approaches (listwise, pairwise, and mean substitution), selected alternatives are covered including single imputation,multiple imputation, and full information maximum likelihood estimation. The effects of missing values are illustratedforalinearmodel,andaseriesofrecommendations is provided. When missing values cannot be avoided, multiple imputation and full information methods offer substantial improvements over traditional approaches. Selected results using SPSS,NORM,Stata (mvis/micombine), andMplus are included as is a table of available software and an appendix with examples of programs for Stata and Mplus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance evaluation of different estimation methods for missing rainfall data

There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...

متن کامل

A New Algorithm to Impute the Missing Values in the Multivariate Case

There are several methods to make inferences about the parameters of the sampling distribution when we encounter the missing values and the censored data. In this paper, through the order statistics and the projection theorem, a novel algorithm is proposed to impute the missing values in the multivariate case. Then, the performance of this method is investigated through the simulation studies. ...

متن کامل

Doubly Robust Nonparametric Multiple Imputation for Ignorable Missing Data.

Missing data are common in medical and social science studies and often pose a serious challenge in data analysis. Multiple imputation methods are popular and natural tools for handling missing data, replacing each missing value with a set of plausible values that represent the uncertainty about the underlying values. We consider a case of missing at random (MAR) and investigate the estimation ...

متن کامل

Inductive learning models with missing values

In this paper, a new approach to working with missing attribute values in inductive learning algorithms is introduced. Three fundamental issues are studied: the splitting criterion, the allocation of values to missing attribute values, and the prediction of new observations. The formal definition for the splitting criterion is given. This definition takes into account the missing attribute valu...

متن کامل

A nonparametric multiple imputation approach for missing categorical data

BACKGROUND Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. METHODS We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each catego...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005